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An overview on the development of QSPR/QSAR equations using various descriptor-mining
techniques and multilinear regression analysis in the framework of the CODESSA (Compre-
hensive Descriptors for Structural and Statistical Analysis) program is given. The description
of the methodologies applied in CODESSA is followed by the presentation of the QSAR and
QSPR models derived for eighteen molecular activities and properties. The properties cover
single molecular species, interactions between different molecular species, properties of sur-
factants, complex properties and properties of polymers. A review with 54 references.
Key words: Molecular descriptors; QSPR; QSAR; Property or activity prediction.
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1. INTRODUCTION

The fast progress in modern computer technology has created an entirely
new environment for the efficient use of the theoretical constructions of
natural science in many areas of applied research. The theoretical approach
has proven to be especially beneficial in chemistry and allied sciences,
where the experimental study and synthetic development of new com-
pounds and materials can frequently be time-consuming, expensive or even
hazardous. Contemporary quantum theory of molecular matter and the
corresponding ab initio computational methods can, in principle, predict
the properties of isolated small molecules with accuracy comparable to the
experimental precision. However, the majority of industrially and environ-
mentally important chemical processes, and all biochemical transforma-
tions in living cells take place in heterogeneous condensed media. The
extreme complexity of such systems usually prohibits use of ab initio theory
and thus the relationship between the chemical and physical properties
and the molecular structure in these systems is often poorly described and
understood.

The direct development of empirical equations that are commonly re-
ferred to as the quantitative structure–activity/property relationships
(QSAR/QSPR) has been an attractive alternative approach to predict molec-
ular properties in complex systems. Notably, the QSAR methodology has
been extremely productive in pharmaceutical chemistry and in computer-
assisted drug design. Thousands of potential new therapeutic agents have
been first developed on a computer screen before the attempted implemen-
tation of selected examples in a synthetic laboratory. In analytical chemis-
try, QSPR equations are commonly used to predict spectroscopic,
chromatographic and other analytical properties of compounds. In recent
years, the QSPR approach has been rapidly expanding to diverse areas of in-
dustrial and environmental chemistry.

In most contemporary applications, empirical molecular descriptors that
rely on some experimental data have been used in the development of
QSAR/QSPR equations. Such descriptors, ranging from the original
Hammett substituent σ-constants to the highly popular partition coeffi-
cients between water and octanol (log P) are, strictly speaking, restricted to
those compounds for which the necessary experimental data are available.
Another shortcoming of experimental descriptors evolves from the fact that
many of them reflect a complicated combination of different physical inter-
actions and thus their appearance in a QSAR/QSPR equation may be diffi-
cult to interpret. An alternative approach is to use molecular descriptors,
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which can be derived using only the information encoded in the chemical
structure of the compound. Importantly, such theoretical descriptors can be
developed for compounds that are experimentally unexplored, unavailable,
or even unknown.

The objective of this review is to provide a compilation of the utility of
theoretical molecular descriptors in a variety of topics of chemistry, tech-
nology and related areas of research. In this review, we have, for reason of
space, restricted ourselves mainly to work carried out using the CODESSA
software, developed by our groups on both the MS Windows1,2 and the
Unix platforms3. QSPR treatments have been developed by many other
groups. Pioneer work was and is being done in the groups of (in
alphabetical order) Balaban4, Bodor5, Benfenati6, Clementi7, Hilal8,
Hopfinger9, Jurs10, Kier and Hall11, Randic12, Trinajstic13, and the references
quoted are illustrative. In our groups, we have tried to obtain relationships
that are as general as possible, utilizing data sets of wide structural diversity
and we have tried to address problems of technological as well as of aca-
demic interest.

2. METHODOLOGY

2.1. Geometry Optimization

The derivation of theoretical molecular descriptors proceeds from the
chemical structure of the compound. Accordingly, the property of interest
and corresponding structures need to be prepared in a format acceptable for
the computer. In practice, there are numerous ways to prepare the data and
each researcher can work out an individual approach. For the users of
CODESSA, the key points of the data preparation are determined by the avail-
able computer-readable formats of the structure of compounds. The CODESSA
software accepts various standard structure formats as input: MDL.mol file;
Hyperchem.hin file; SYBYL.mol file; MOPAC/AMPAC regular.out file. In most
cases, the use of the correct 3D molecular structure of the compounds is vi-
tally important to predict correctly the molecular properties or the biologi-
cal activity. Therefore, the geometry of the molecules needs to be optimized
to obtain the correct shape and conformation of the molecule. A variety of
molecular modeling programs are available that employ different molecular
mechanics algorithms for the geometry optimization. The following steps
have been frequently used for the preparation of data and generation of 3D
structures: (i) input of the molecular geometry using a graphical interface or
by downloading from the corresponding database; (ii) preliminary geome-
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try optimization using molecular mechanics; (iii) refinement of the 3D mo-
lecular structure and calculation of electronic properties of compounds
using (semiempirical) quantum mechanical methods. The next step, the
calculation of molecular descriptors from these data, comprises the kernel
of the CODESSA software.

2.2. Descriptor Generation

The CODESSA software package includes a tool for effective descriptor gen-
eration based on the information given by the input file for the structure.
All these descriptors are derived only from the structure and calculated elec-
tronic properties of the molecules. The number of descriptors calculated de-
pends on the constitution of the molecule and the selections made by the
user. In most cases, more than 400 molecular descriptors can be calculated
for a single molecule in the first instance. By combining the available stan-
dard descriptors using a special tool within the CODESSA program, this
number can be substantially increased. An option for the development of
new descriptors also provides the possibility to calculate fragment
descriptors.

The molecular descriptors available in CODESSA are subdivided into vari-
ous subsets according to the molecular features they reflect. Constitutional,
topological, geometric, electrostatic, quantum-chemical, thermodynamic
and solvation descriptors can thus be distinguished. However, such classifi-
cation is somewhat arbitrary because some descriptors are sensitive to sev-
eral molecular features. The origin of various descriptors has been
extensively described elsewhere14–18 and we therefore limit ourselves here
to a short classification of theoretical molecular descriptors.

Constitutional descriptors depend only on the chemical composition of
the molecule and describe very simple dependences such as the additivity
of molecular properties from constant fragment contributions. Topological
descriptors are one of the most widely used class of molecular descriptors
that are derived from the two-dimensional structural formula of the mole-
cule. These descriptors are sensitive to molecular connectivity and reflect
the branching of the molecule. Electrostatic descriptors reflect the structural
charge distribution in the molecules. In many cases, they are also related to
the molecular topology and composition. Partial charge distributions can
be calculated using various empirical schemes that are based on the
electronegativities of atoms1 or Mulliken charges obtained from the
quantum-mechanical calculations. Geometrical descriptors reflect the
three-dimensional structure and shape of the molecule. A large number of
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molecular and local quantities characterizing the reactivity, shape and
bonding of a molecule as well as its molecular fragments and substituents
can be defined as quantum-chemical descriptors19. Quantum-mechanical cal-
culations have become routine even for rather large molecular systems and
therefore the information related to the structure and electronic distribu-
tion can be easily and efficiently used in deriving new descriptors and ex-
plaining the properties of molecules. Thermodynamic descriptors, which
include the heat of formation, entropy and heat capacity of the compound,
can be derived using the MOPAC/AMPAC software. Solvatational descriptors
are also based on the quantum mechanical calculations and can be ob-
tained using SCRF2.2 program of self-consistent reaction field model imple-
mented in the MOPAC package20. A recent trend is the development of
descriptors that reflect the three-dimensional properties of molecules4,21–24

which should be more appropriate to describe intermolecular interactions
under real conditions.

2.3. Statistical Methods

The CODESSA software involves two menus that are needed for the devel-
opment of QSAR/QSPR equations on the large molecular descriptor basis.
The first of them features the preliminary analysis of data whereas the sec-
ond incorporates various multivariate regression analysis techniques1,2.

The preliminary analysis tool involves one-dimensional, two-dimensional
and multivariate analysis of property(s) and descriptor(s). Statistical charac-
teristics of data such as the mean values, dispersions, standard deviations
and variation coefficients can be calculated automatically both for the
descriptors and for the properties. Also, the requirement of the normal dis-
tribution of data is checked according to various criteria. Two-dimensional
analysis makes it possible to analyze the intercorrelation of descriptors.
This procedure is mandatory to avoid the chance correlations due to the
collinearity of the descriptors. The multivariate statistical analysis methods
represented in CODESSA involve principal component analysis (PCA), non-
linear iterative partial last squares (NIPALS) and target transformation PCA
techniques.

The regression analysis tool involves various techniques based on the
(multi)linear regression analysis to find the best QSPR/QSAR representation
of a property studied. Simple linear and multilinear regression methods can
be used to develop relationships between the property and specific
descriptors. Several strategies are encoded in CODESSA that can be used to
develop the QSPR/QSAR equations with the maximum predictive and de-
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scriptive power. The strategies of the heuristic and the best multilinear regres-
sion approaches are usually those chosen first1,2,17,25,26. These strategies are
both based on the stepwise forward selection of scales that proceed from
the statistical significance and collinearity control of the descriptors se-
lected into the correlation equations. One can also use principal compo-
nent regression analysis, NIPALS regression analysis, or nonlinear
regression analysis to develop the model with the best predictive and de-
scriptive power. However, it should be emphasized that the development of
the best QSAR/QSPR model for each particular property/activity often in-
volves a combination of different approaches. Powerful strategies, already
utilized by other groups in QSPR analysis, include methods that rely on neu-
ral networks5,27,28, simulated annealing29 and various data- and knowledge-
mining techniques.

2.4. Available Programs

Many commercially available statistical software packages (STAT-GRAPHICS,
MATLAB, LINPACK, etc.)30 include the standard multilinear least-squares
technique and can in principle be used to develop QSAR/QSPR correlations.
However, their extensive use in the QSAR/QSPR development is often in-
convenient because of the need (i) to calculate and format the molecular
descriptors separately using different software, (ii) to select manually indi-
vidual descriptors into correlations, which is impractical for a large number
(several hundreds) of virtual descriptor scales.

A number of software packages have been developed specifically for struc-
ture–activity/property relationship studies. These packages include, as a
rule, modules for structure input and for the calculation of empirical and
also non-empirical descriptors. In most cases, various techniques for the
statistical data treatment are also incorporated into the package. For in-
stance, the ADAPT (Automated Data Analysis and Pattern Recognition
Toolkit) program of Jurs10,31 includes several methods to select the best sub-
set of descriptors and the mapping of these descriptors onto the known bio-
logical activity or physical property using regression analysis or
computational neural networks. ADAPT has also a large set of modules to
generate structure-based descriptors classified as topological, geometrical,
electronic and physicochemical. The TSAR software is a fully integrated
QSAR package distributed by the Oxford Molecular Group (OMG). Using
TSAR, the molecular structures, properties and associated data can be con-
veniently treated in one straightforward chemical spreadsheet. It also com-
bines the data visualization with the complex statistical analysis and works
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as a front-end to several software packages distributed by OMG. The QSAR+
is a module for the Cerius2 program distributed by the Molecular Simula-
tions Inc. QSAR+ allows the calculation of various electronic, confor-
mational, shape and thermodynamic descriptors. It also offers linear regres-
sion analysis, stepwise and multiple linear regression analysis, principal
component analysis and principal component regression, and partial
least-squares techniques for developing QSAR models. The resulting models
can be validated with cross-validated regression coefficients (Rcv

2 ), bootstrap
R2, and the Fisher significance test. The module Descriptor+ extends the
range of QSAR analysis in Cerius2 by supplying a wide range of generic
descriptors. The SPARC (Performs Automated Reasoning in Chemistry)8

software is a specific package for the prediction of physical properties and
chemical reactivity parameters of organic compounds from the molecular
structure data. It involves statistical methods related to the conventional
linear free energy relationship (LFER) and structure–activity relationships.

Some of the QSAR/QSPR programs are designed to handle specific data or
compounds. A good example is TOPKAT (developed by Health Design, Inc.
and distributed by OMG) which computes and automatically validates an
assessment of the toxic and environmental effects of chemicals based on
developed QSPR/QSAR models.

3. RESULTS

We now give a summary of the results obtained using the CODESSA pro-
gram. More details can be obtained from the original papers quoted. In par-
ticular we have generally not included the specific correlation equations,
because this would have involved significant expension of the length to
provide definitions of individual descriptors used (such are provided in Ta-
bles in the original papers). Again, in this review, we have not repeated the
justification for the number of descriptors chosen in the correlations:
clearly, R2 is improved by including additional parameters, but, as described
in the original works, we have attempt to keep the correlation as simple as
possible even when Rcv

2 would also be improved by additional terms.
Finally, we also refer readers to the original publications for detailed com-
parisons of the results with the experimental data.

3.1. Properties of Single Molecule Species

Boiling point. The boiling point of a compound is predetermined by the
intermolecular interactions in the liquid and by the difference in the mo-
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lecular internal partition function in the gas phase and in the liquid at the
boiling temperature. Therefore, it is expected to be related directly to the
chemical structure of the molecule and indeed numerous methods have
been developed for estimating the normal boiling point of a compound
from its structure.

Our first study considered the boiling points of pyridines and piperi-
dines15. A data set of 84 compounds was used to generate a QSPR model (R2 =
0.898) which involved six descriptors based only on molecular structure15.
A subsequent related study was limited to the boiling point of substituted
pyridines25. A set of 64 non-associated (incapable of hydrogen bonding) py-
ridines resulted in a good two-parameter correlation (R2 = 0.927) for the
boiling points. The descriptors showed the importance of the effects related
to the molecular mass (expressed by the gravitation index) and inter-
molecular dipole–dipole interactions in the liquid media. The full set of py-
ridines (85 compounds) included also those derivatives, which form
hydrogen bond(s). A six-parameter correlation model was derived (R2 =
0.948) with four additional descriptors which describe the hydrogen bond
accepting/donating capability of compounds at the intra- or intermolecular
level25.

These successful studies of small groups of compounds encouraged us to
work with data sets, which comprised a large structural and functional vari-
ability. Such a QSPR treatment of normal boiling points was carried out for
a set of 298 structurally variable organic compounds17. A highly significant
two-parameter correlation (R2 = 0.9544, s = 16.2 K) was obtained that in-
volved theoretical descriptors with clear physical meaning. The first
descriptor (gravitation index) is connected with the bulk cohesiveness, dis-
persion and cavity-formation effects in liquids. The second descriptor, the
area-weighted surface charge of the hydrogen bonding donor atom(s), is
connected with the hydrogen bonding ability of the molecule. A more re-
fined QSPR model (with R2 = 0.9732 and s = 12.4 K) included, in addition,
the most negative atomic partial charge and the number of the chlorine at-
oms in the molecule. The four-parameter equation offered an average pre-
dicted error of 2.3% for a standard set of compounds with an average
experimental error of 2.1%. The QSPR equations developed allowed remark-
ably accurate predictions of the normal boiling points for a number of sim-
ple inorganic compounds, including water.

In follow-up work, the data set of 298 compounds was extended to pro-
vide a still more diverse and general data set of 584 organic compounds
containing C, H, N, O, S, F, Cl, Br, and I atoms, compiled and divided into
subsets by molecular functionalities32. Additional descriptors were sought
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for each subset, which together with the gravitation index and the charged
surface area of hydrogen donor atoms would model the boiling points. A fi-
nal global eight-parameter correlation model had R2 = 0.965 and a standard
error of 15.5 K that is close to the estimated experimental error. The model
appears to be general for a wide variety of organic compounds and expands
and refines the conclusions of previous correlation models of boiling point.

Melting point. Another important physical property of pure compounds is
the melting point. The melting point is a fundamental physical property
specifying the transition temperature when the solid and liquid phases can
coexist. Besides its direct utility as an indicator to whether a compound is
solid or liquid under normal conditions, melting points have numerous ap-
plications in biochemical and environmental sciences due to their relation-
ship with solubilities. Because of the complex interactions involved, the
melting temperature is expected to be a difficult property to describe by a
uniform QSPR model for compound sets with large structural variability.
Additionally, many compounds crystallize in more than one polymorphic
form, with different melting points. Therefore, our studies have been lim-
ited to distinct groups of compounds.

The melting points of 141 pyridines and piperidines were used to develop
a QSPR model for these heterocycles. Six descriptors gave a reasonably good
correlation of melting points with R2 = 0.831 and cross-validated Rcv

2 =
0.816 (ref.15). Later25, the data set was limited to pyridines only and up-
dated with additional data points. The melting points of pyridine and 140
substituted pyridines yielded a six-parameter correlation with R2 = 0.857,
Rcv

2 = 0.843 and standard deviation s = 36.1 K. The most important
descriptor reflects the importance of the hydrogen bonding ability of the
compound. The other descriptors can be related to intermolecular interac-
tions in condensed media, crystal lattice packing and the fact that solid in-
sulators with a smaller energy gap between the valence band and the
unoccupied band are more resistant to disordering (melting).

Another set comprised included 443 mono- and disubstituted benzenes.
A correlation equation including nine descriptors (R2 = 0.8373, s = 30.19 K)
was obtained for the whole set18. Three other six-parameter equations de-
scribed the ortho-, meta-, and para-substituted compounds subsets. The im-
portance of hydrogen bonding descriptors was again reflected in these
QSPR models. Notably, the same hydrogen bonding descriptor (the
area-weighted surface charge of the hydrogen bonding donor atom(s)) was
also important in the prediction of the boiling points17. Apart from the hy-
drogen bonding ability of the molecules, the melting point is governed by
the molecular packing in crystals (effects from molecular shape, size and
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symmetry), and other intermolecular interactions such as charge-transfer
and dipole–dipole interactions in the solid phase.

Critical temperature. The critical temperature is one of the important prop-
erties revealing the intermolecular interactions between molecules in the
liquid state. The development of QSPR models for critical temperatures us-
ing CODESSA methodology has been successful. One- and three-parameter
QSPR models were developed for sets of 76 hydrocarbons and of 165 struc-
turally diverse molecules, respectively33. The one-parameter model utilizing
the cube root of the gravitation index allows the prediction of critical tem-
peratures for hydrocarbons with an average error of 13.9 K (with R2 =
0.9526, Rcv

2 = 0.9472), while the three-parameter prediction of critical tem-
peratures for diverse molecules has an average error of 16.8 K (with R2 =
0.955, Rcv

2 = 0.9547). The models confirmed that molecular size-dependent
bulk effects (dispersion and cavity formation) in the liquid state can be rep-
resented by functions of the gravitation index, whereas the hydro-
gen-bonding self-association interactions can be represented by the area
weighted surface charge or hydrogen bonding donor atoms. However, the
donor hydrogen structural features alone do not account for the differences
among various hydrogen-bonding acceptors, and this inadequacy is more
serious for the critical temperature than for the boiling point. The supple-
mentary descriptors needed to account for the differences of hydro-
gen-bonding acceptors and branching effects in isomers differ for the two
properties.

Flash point. Preliminary correlations of flash points have given moderate
results. A modest correlation (R2 = 0.758) was obtained for the flash points
of 126 pyridines15. Flash point appears to be a difficult physical property to
predict unless some provision has been made to separate compounds into
similar functional groups.

A reduced data set of 121 pyridines with the exclusion of experimentally
questionable data was used to develop a six-parameter equation for the
flash points25 with R2 = 0.837 (Rcv

2 = 0.832, s = 16.7 K). The descriptors em-
ployed in this equation indicate the importance of molecular bulk and hy-
drogen bonding effects in determining the flash point25.

Vapor pressure. Vapor pressure determines the volatility of a chemical. It
governs the exchange rate of a chemical across an air–water interface
through Henry’s Law Constant. Accurate vapor pressures of chemicals of
low volatility are often not available due to analytical difficulties. In such
cases, the vapor pressure may be predicted using either the Clapeyron–
Clausius equation and known values of the enthalpy of vaporization and
the respective compressibility factor, or by a group-contribution method.
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Alternatively, the quantitative structure–property relationship approach is
highly promising for the estimation of vapor pressures from descriptors de-
rived solely from the molecular structure by fitting into experimental data.
The method is more general and is particularly suitable for the prediction
of the vapor pressure of new chemical products.

We applied regression analysis tools in CODESSA to develop a QSPR
model for the vapor pressure. The best linear five-parameter correlation
model (R2 = 0.949, Rcv

2 = 0.947, s = 0.331) applied to a set of 411 com-
pounds34. The model indicates that vapor pressure is governed by structure
factors similar to those already found for the boiling point. The gravitation
index over all bonded atoms reflects the effective mass distribution in the
molecule and effectively describes the molecular dispersion forces in the
bulk liquid media. The hydrogen bonding donor charged surface area also
represents the forces of intermolecular attraction, particularly the hydrogen
bonding ability of the compound. Three additional descriptors compensate
for an inadequate description of the intermolecular interactions occurring
in molecules containing fluorine, chlorine or nitrogen atoms. The cross-
validated correlation coefficient shows that the regression equation is of
high stability and that the standard error approaches the experimental er-
ror of 0.32 log units.

Refractive index. The refractive index is one of the most important optical
properties and is frequently employed to characterize organic compounds.
The refractive index is defined as the ratio of the velocity of light in vacuum
to the velocity of light in the substance of interest. It has been used as an
indicator of the purity of organic compounds, but the relationship of re-
fractive index to other optical, electrical and magnetic properties has more
significance. The refractive index is connected to polarizability, critical
temperature, surface tension, density, and boiling point. Refractive index is
also widely used in materials science to evaluate the applicability of materi-
als for various purposes. Prior to our work, no general QSPR relationship re-
lating refractive index of organic compounds with the chemical structure
had been proposed.

A five-parameter correlation equation (R2 = 0.945, Rcv
2 = 0.937, s = 0.0155)

was obtained for a diverse set of 125 organic compounds35. The descriptors
reveal several interaction mechanisms important for the refractive index.
Specifically, they include the polarizability and the polarity of the mole-
cule, the charge distribution in the molecule, hydrogen-bonding interac-
tions in the medium, and molecular size-dependent effects in the molecule.
The calculated cross-validated correlation coefficient confirms the stability
of the final QSPR model. The predicted values have an average error of
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0.8% when compared with the experimental values; therefore, this QSPR re-
lationship can be used for the prediction of refractive indices with a high
degree of confidence.

Density. The normal density (i.e., the density at 1 atm and 20 °C) is one of
the major physicochemical properties used to characterize and identify a
compound. Besides being an indicator for the physical state (condensed
phase or gas) of a compound, the density also provides an indication of its
utility in certain industrial applications. In addition, densities can be used
to predict or estimate other physical properties such as critical pressures.

A general QSPR treatment of 303 structures (containing C, H, N, O, S, F,
Cl, Br, and I) incorporating a wide cross-section of classes of liquid organic
compounds provided a good two-parameter correlation36 (R2 = 0.9749, s =
0.0458) for density. The main descriptor involved in this correlation re-
presents the intrinsic density of the compound calculated as the ratio of the
molecular mass and the molecular volume (represented by the overlapping
van der Waals’ atomic spheres model) of the molecule. The second term is
defined as the average electrostatic interaction per atom in the molecule, a
term that is formally analogous to the Madelung energy in ionic crystals.
Correlations were also developed for individual classes of organic liquids.

3.2. Interactions Between Different Molecular Species

Octanol–water partition coefficient. A six-parameter CODESSA correlation
model constructed for the logarithm of the octanol–water partition coeffi-
cient of 71 pyridines showed25 R2 = 0.943, Rcv

2 = 0.929, s = 0.19. The
descriptors indicate the importance of the constitution and topology of the
compounds. The electrostatic and structural features of the N atom were re-
flected by four descriptors connected with the hydrogen bond acceptor
ability of pyridines in water and in octanol.

Aqueous solubility of liquids and solids. The aqueous solubilities (Sw) of or-
ganic compounds are very important in many research areas, such as phar-
maceutical or environmental science. A confident prediction of the
aqueous solubility of a compound could greatly assist drug design by avoid-
ing the synthesis of unsuitable compounds. The many different predictive
methods available fall into the following types: (i) group contribution
methods derived from measured aqueous solubilities; (ii) correlations with
experimentally determined physicochemical properties such as boiling
point, molecular surface area, molar volume, chromatographic retention
time and others; (iii) correlations with descriptors calculated only from mo-
lecular structure.
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The aqueous solubilities of a set of 96 hydrocarbons and 126 halogenated
hydrocarbons excluding compounds capable of forming hydrogen bonds
were correlated by a three-term equation using descriptors calculated solely
from molecular structure, with a correlation coefficient of 0.980 and a stan-
dard error of 0.386 log units, compared to an estimated average experimen-
tal error of 0.24 log units37. This allows the estimation of aqueous
solubilities of hydrocarbons and halogenated hydrocarbons (including
polychlorinated biphenyls). The key descriptor is the molecular volume,
modified by topological and constitutional terms to account for features
that increase the solubility of the molecules.

To develop a general QSPR model for calculating the aqueous solubilities
of diverse organic compounds, the data set was enlarged to 411 com-
pounds34 and a six-parameter correlation model (R2 = 0.879, Rcv

2 = 0.874, s =
0.573) was derived. Solute–solvent interactions are major determining fac-
tors for the aqueous solubilities of compounds and, accordingly, the
descriptors involved in the model are related to the polarizability of the
molecule, cavity-size effects (dispersion and cavity formation), shape of the
molecule and specific solute–solvent interactions. The standard error of the
model is within the estimated experimental error of 0.58 log units.

Aqueous solubility of gases and vapors (water–air partition coefficients). The
partitioning of non-electrolytes between air and water or aqueous solutions
is of significant chemical and thermodynamical interest as well as of great
practical importance. The partitioning of organic gases and vapors into wa-
ter (Lw) has been studied using CODESSA on two sets of compounds38. The
first correlation equation (R2 = 0.977, Rcv

2 = 0.975, s = 0.20) gives an excel-
lent prediction for 95 alkanes, cycloalkanes, alkylarenes, and alkynes with
two descriptors which reflect the effective mass distribution and the degree
of branching of the hydrocarbon molecule, and adequately represent the ef-
fective dispersion and cavity formation effects for the solvation of nonpolar
solutes in water. An enlarged set of organic compounds (406) with far
greater structural variability gives a good correlation equation (R2 = 0.941,
Rcv

2 = 0.939, s = 0.53) involving five descriptors. These descriptors, which are
completely different from those for the set of 95 nonpolar solutes, account
for the dispersion energy of polar solutes in solution, the electrostatic part
of the solute–solvent interaction and hydrogen-bonding interactions in liq-
uids.

Vapor pressure (P) and water solubility (Sw) are fundamental physical pa-
rameters and they can be used to derive many other properties. The rela-
tionship between water–air partition coefficient (Lw), water solubility and
vapor pressure is important because water solubility and vapor pressure can
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be determined more easily than water–air partition coefficients. Using the
direct relationship34 Lw = 24.45Sw/P, we could predict Lw by P and Sw
through experimental data and/or through the appropriate QSPR models
for P and Sw. The QSPR models also help the understanding of the different
structural factors which determine P, Sw, and Lw.

Values for vapor pressure and aqueous solubility were predicted by the
models described above for the diverse set of 411 compounds34. They were
then used to predict water–air partition coefficients according to the de-
rived formula. The result was compared with experimental data. The mean
standard error of this prediction is 0.63 log units, which is close to the stan-
dard error of Lw predicted using the equation derived directly from the ex-
perimental values of Lw (ref.38). We conclude that hence this procedure is a
valid approach to calculate Lw by using QSPR predicted values of P and Sw.
It is apparent that the QSPR models of Sw and P (ref.34) have similar leading
structural determining factors in comparison with the direct QSPR equation
of Lw (ref.38).

Solvent polarity scales. The use of solvents is fundamental to the practice
of chemistry, and the choice of an appropriate solvent can be anything but
trivial. To assist chemists in their understanding of solvent properties and
in the choice of solvent, many solvent polarity scales have been developed.
These scales are based on diverse physicochemical phenomena including
reaction rates, solvatochromic effects, reaction enthalpies, etc. Frequently
the actual mechanism of the solvent influence on a physical or chemical
process is unclear. The same is often true about the individual polarity
scales.

A three-parameter QSPR equation with R2 = 0.936 (Rcv
2 = 0.900) was devel-

oped for the unified nonspecific solvent polarity scale (S′) on the basis of
theoretical molecular descriptors26. It correlates S′ for 25 structurally diverse
solvents within a 5% average absolute error. The correlation equation in-
cludes the following three orthogonal theoretical molecular descriptors: (i)
the average structural information content (order 0), (ii) the weighted par-
tial negative surface area, and (iii) the hydrogen-bonding acceptor surface
area. These descriptors provide insight into nonspecific solvation at the
molecular level. They reflect adequately the solvent–solute interactions in
the internal cavity of the solvents. Predictions using this three-parameter
model are used to extend available S′ values to a total of 67 solvents. The
same solvent polarity scale has been also studied using CODESSA to enable
the prediction of the S′ values from quantum-mechanical calculations39.

In a more comprehensive study, the most important solvent polarity
scales were collected and QSPR models developed for each of them. Alto-

Collect. Czech. Chem. Commun. (Vol. 64) (1999)

1564 Karelson, Maran, Wang, Katritzky:



gether 45 different solvent polarity scales and 350 solvents were analyzed.
The QSPR models for each of the scales were constructed using only theo-
retical descriptors. From these40, 27 of the 45 models give R2 > 0.90 and
only two had R2 < 0.82. This study allowed a unified PCA treatment of sol-
vent polarity where the missing values in the polarity scales are calculated
from correlation models derived with CODESSA (ref.41). A set of 40 scales
and 40 solvents showed that three main principle components accounted
for a total of 74% of the variance. Moreover, for 90% of the scales, these
three components described ≥88% of the variance. The PCA loadings
showed clear clustering of the scale is a three-dimensional space in a chemi-
cally rational manner. Similarly, the PCA scores classified the solvent intel-
ligently41.

CODESSA has been also used to examine the dimensionality of inter-
molecular interactions in liquids and solutions42–44.

GC retention time and response factor. A good six-parameter QSPR model
was obtained25 for the retention indices of 50 polyalkylated pyridines (R2 =
0.971, Rcv

2 = 0.966, s = 017.8). The descriptors involved in the equation re-
flect the relative position and size of alkyl groups connected to the pyridine
ring. They also show the importance of intermolecular interactions be-
tween solute and stationary phase, upon which gas chromatographic reten-
tion depends.

A general QSPR treatment on 152 individual structures incorporating a wide
cross-section of classes of organic compounds provided good six-parameter
correlations for gas chromatographic retention times (R2 = 0.959, Rcv

2 =
0.955, s = 0.515 for tR) and for Dietz flame-ionization response factors (R2 =
0.892, Rcv

2 = 0.881, s = 0.0543 for RFDietz)14. In the case of tR, the most impor-
tant descriptors were α-polarizability and the minimum valency at an H
atom, describing the dispersional and hydrogen-bonding interaction be-
tween the compound studied and the gas chromatographic medium, re-
spectively. In the case of RF, the most important descriptors were found to
be the relative weight of the “effective” carbon atoms and the total molecu-
lar one-center one-electron repulsion energy in the molecule. The possibil-
ity to predict value is of particular significance for the response factors,
which are independent of GC column parameters. These results are recently
reevaluated using improved procedures in CODESSA and new methods for
the efficient selection of variables for multilinear regression analysis45.
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3.3. Surfactant Properties

Critical micelle concentration. The strategies implemented in CODESSA
have been successful in developing QSAR models for complex surfactant
properties such as critical micelle concentrations. We found that for these
studies fragment descriptors based on the two clearly differentiated parts of
a surfactant were applicable.

The first QSPR study was performed on the critical micelle concentrations
(cmc) of nonionic surfactants46. A general three-parameter structure–prop-
erty relation was developed for a diverse set of 77 nonionic surfactants (R2 =
0.9849, Rcv

2 = 0.9823, s = 0.1697) employing topological descriptors calcu-
lated separately for the hydrophobic and hydrophilic fragments of the
surfactant molecule. The three descriptors represent contributions from the
topology of the hydrophobic group, and the size of the hydrophilic group.
The cmc of nonionic surfactants in aqueous solution is primarily deter-
mined by the hydrophobic part of the molecule. The logarithm of the cmc
decreases with an increase in the size of the hydrophobic fragment and in-
creases with an increase in the relative size of the hydrophilic fragment.
Hydrophobicity is affected by the branching of the hydrophobic fragment
and by the presence of heteroatoms.

Relationships between the molecular structure and the cmc of anionic
surfactants were investigated in a second study47. The measured cmc for
119 anionic structures were considered, representing sodium alkylsulfates
and sodium sulfonates with a wide variety of hydrophobic tails. The best
multiple linear regression model involved three descriptors and had a corre-
lation coefficient of R2 = 0.940 (s = 0.2173). A still better correlation (R2 =
0.986) was obtained using three descriptors for a subset of 63 structures,
with variation only in the hydrophobic domain.

Cloud point. The cloud point is an important property of nonionic surfac-
tants. Below this temperature, a single phase of molecular or micellar solu-
tion exists, above it the surfactant loses sufficient water solubility and a
cloud dispersion results.

A general empirical relationship (R2 = 0.937) has been developed for esti-
mating the cloud point of pure nonionic surfactants of the alkyl ethoxylate
class48. For a set of 62 structures, composed of linear alkyl, branched alkyl,
cycloalkyl and alkylphenyl ethoxylates, cloud points can be estimated to an
accuracy of ±6.3 ºC (3.7 ºC median error) using the logarithm of the num-
ber of ethylene oxide residues and three topological descriptors that ac-
count for hydrophobic domain variation.
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3.4. Complex Properties and Properties of Polymers

Polymer glass transition temperature. The QSPR description of polymer
properties represents an interesting challenge since many theoretical mo-
lecular descriptors for the high-molecular-weight compounds are difficult
to calculate, or cannot be calculated directly. The glass transition tempera-
ture, Tg, also known as the glass temperature or the glass–rubber transition
temperature, is one of the most important properties of amorphous poly-
mers. In the vicinity of Tg, a polymer experiences a sudden increase in the
rate of molecular motions and, as a result, undergoes a series of confor-
mational transformations.

Using the CODESSA software, an optimum four-parameter QSAR model
(R2 = 0.928, Rcv

2 = 0.890) was derived for glass transition temperatures for a
homogenous set of 22 homo- and copolymers16. Removing an obvious out-
lier from the data set improved the correlation to R2 = 0.983. The
descriptors in the correlation equations reveal that the glass transition tem-
peratures of the polymers studied are strongly influenced by the difference
between the positive and negative partial surface areas (DPSA) normalized
by the number of atoms. As expected, the polymers with large DPSA values
have stronger intermolecular electrostatic interactions and therefore display
higher glass transition temperatures. The next most important descriptor is
the topological Randic index computed for the repeating unit and then ex-
trapolated through multiplication by log N (N, number of fragments),
which reflects the branching level of a molecule. According to the QSPR
model developed, a higher degree of branching in the repeating fragment
structure elevates the glass transition temperature. The third parameter, the
number of OH groups, is of the expected significance because it accounts
for the presence of hydrogen bonds in the polymer matrix.

A five-parameter QSPR correlation (R2 = 0.946, standard error 0.33
K g mol–1) of molar glass transition temperatures for a diverse set of 88
high-molecular-weight polymers was developed as an extension of the ear-
lier work to more diverse structures49. The polymers were modeled with
three repeating units for each polymer and the descriptors were calculated
only for the middle unit of the trimeric structure. In this way, the influence
from adjacent repeating units was also taken into account. The descriptors
in the model relate to the rotational flexibility of the molecules at the Tg,
the branching of the polymer molecules, hydrogen-bonding interactions,
and electrostatic interactions between the polymer molecules. This ap-
proach is applicable, in principle, to all linear polymers of regular structure,
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and encourages the further application of QSPR methods to other types of
polymers such as copolymers, crosslinked polymers and biopolymers.

Polymer refractive index. For polymers, the refractive index (n) is a funda-
mental optical property directly related to other optical, electrical, and
magnetic properties. Therefore a satisfactory quantitative structure–prop-
erty relationship (QSPR) that would allow quantitative prediction of the re-
fractive index of both known and of as yet unsynthesized polymers would
clearly be of significant utility.

A general QSPR model (R2 = 0.940, Rcv
2 = 0.934, s = 0.018) was developed

for the prediction of the refractive index for a diverse set of 95 amorphous
homopolymers50. The five descriptors, involved in the model, are calcu-
lated from the structure of the repeating unit of the polymer. The QSAR
model was derived with an intercept fixed to a value of one, i.e. to the re-
fractive index of a vacuum. The correlation model shows that the polariz-
ability (described by the HOMO–LUMO energy gap) has an important
influence on the refractivity index of polymers just as for low-
molecular-weight compounds (see above)50. Compounds of lower stability
(described by the heat of formation) possess higher refractive indices. Other
descriptors show the importance of charge distribution and the hybridiza-
tion of carbon atoms in the repeating unit of the polymer. The average pre-
diction error of the model is 0.9%, and the highest prediction error is 3.2%.

Rubber vulcanization acceleration. In spite of the fact that the vulcanization
of rubber has been studied for many years, its precise mechanism has re-
mained unclear. CODESSA QSPR treatment has assisted the understanding
of some key features of this process. The regression analysis was carried out
to correlate various parameters, including ts2 (the onset of cure) and mxr
(the maximum rate of vulcanization), with molecular descriptors51. Correla-
tions were performed on four data sets and two classes of accelerator mole-
cules. The first class comprised disulfides and the other represented a
combination of sulfenamides and sulfenimides. Parent molecules of the ac-
celerators and also their zinc complexes with thiolate fragments were both
modeled for each class to give a total of four data sets, all of which gave
good correlations.

Biological properties. The QSAR approach is widespread in the prediction of
the biological activity of compounds. The CODESSA software has been used
to study the mutagenic toxicity. A QSAR model with R2 = 0.834 and s =
0.6576 was derived for a set of 95 heteroaromatic and aromatic amines to
correlate and predict their mutagenic activity measured by the Ames test52.
It consists of six quantum-chemical descriptors, which indicate the impor-
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tance in the mutagenic activity of heteroaromatic amines of hydrogen
bonding, of effects induced by the solvent, and of the size of compound.

The theoretical descriptors and statistical methods implemented in
CODESSA have been used to develop interpretative and predictive QSAR
models for structurally diverse 5-HT1A receptor antagonists53. Altogether
ten correlation models were analyzed. The descriptors involved in these
models show the importance of electrostatic interaction between the
protonated amine function and a primary nucleophilic site of the receptor
necessary for recognition, as expressed by the molecular orbital indexes lo-
calized on the NH+ group. Short-range attractive and repulsive molecular
interactions which modulate the binding affinities are described by MO in-
dexes computed on the whole molecules (polar and dispersive forces), by
CPSA descriptors computed on the whole molecules or on the bicyclic frag-
ments (polar forces) and by ad hoc defined size and shape descriptors
(dispersive and steric forces).

Theoretical molecular descriptors in QSAR models also elucidated the role
of the main pharmacophoric components and developed a model for the
interaction of the 5-TH3 ligands related to quipazine with their receptor54.
The essential nature of the arylpiperazine interaction mode toward the re-
ceptor can be summarized as follows: (i) a charge-assisted hydrogen bond,
(ii) a hydrogen-bonding interaction, and (iii) an aromatic specific interac-
tion.

4. PROBLEMS AND FUTURE POTENTIAL

The development of QSAR/QSPR models on large theoretical descriptor
spaces is a powerful tool not only for the experimentally meaningful pre-
diction of the chemical, physical and biological properties of compounds,
but also for the deeper understanding of the detailed mechanisms of inter-
actions in complex systems that predetermine these properties. Two direc-
tions seem to be especially promising for the further development of this
approach. First, it is essential to derive new theoretical descriptors that cor-
respond to clearly defined physical interactions in complex molecular sys-
tems. In particular, descriptors that account correctly for the properties of
mixtures, blends and other multicomponent systems would be of immense
practical applicability in many areas of chemical technology and engineer-
ing9. It is also important to develop molecular descriptors that could prop-
erly account for environmental conditions such as the temperature,
pressure and solvent.
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The second direction in the further development of the QSAR/QSPR ap-
proach is undoubtedly connected with the extensive use of modern com-
puter intelligence methods in the development of quantitative relation-
ships between the molecular structure and properties. The methods that
rely on neural networks5,27,28 simulated annealing29 and various data- and
knowledge-mining techniques promise to be much more efficient in devel-
oping QSAR/QSPRs in large and very large molecular descriptor spaces. No-
tably, such approaches should help overcome problems often encountered
in regression analysis due to the collinearity of scales or heterosedasticity of
the data.
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